Fluid and Electrolyte Management

Ajai K. Malhotra, MD
VCU School of Medicine

Volume and Electrolytes

- Normal requirements
- Pre-existing deficits of excesses
- Ongoing losses or gains

Question

- 70 Kg otherwise healthy male – NPO
- Appropriate 24 hour fluid/electrolyte regimen
 - D5W @ 125ml/hr
 - NS @ 125cc/hr
 - D5W + NS @ 150ml/hr
 - D5W + ½ NS @ 125ml/hr √
 - LR @ 125ml/hr

Why 125ml?

- Intern said so
- Chief resident asked me to
- Attending ordered me to
- That is the normal requirement √

‘Normal’ fluid requirement

<table>
<thead>
<tr>
<th>Kg</th>
<th>per hour</th>
<th>per 24 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First 10 Kg</td>
<td>4ml</td>
<td>100ml</td>
</tr>
<tr>
<td>Second 10 Kg</td>
<td>2ml</td>
<td>50ml</td>
</tr>
<tr>
<td>Subsequent Kg</td>
<td>1ml</td>
<td>25ml</td>
</tr>
</tbody>
</table>

‘Normal’ losses

- Sensible losses
 - urine
 - feces
- Insensible losses
 - skin
 - lung
Sensible losses
- **Minimum urine volume**
 - ~400 ml
 - normal kidneys
 - maximally concentrating urine
- **Adequate urine volume**
 - ½ ml/Kg (30 ml/hr)
 - higher for children
 - 1000 – 1500 ml
- **Fecal loss**
 - 100 – 300 ml

Total sensible loss = ~ 1800 ml

Losses
- **Insensible**
 - ambient temperature
 - 600 – 1000 ml
- **Total = sensible + insensible**
 - 1800 + 1000 = 2800 ml

Calculations
- **24 hour losses** = 2800 ml
- **@125 ml/hr** = 3000 ml/24 hr
- **Formulae (70Kg healthy male)**
 - I 10 Kg: 40 ml/hr 1000 ml/24 hr
 - II 10 Kg: 20 ml/hr 500 ml/24 hr
 - 50 Kg: 50 ml/hr 1250 ml/24 hr
- **Total**
 - 110 ml/hr 2750 ml/24 hr
 - (2640 ml/24 hr)

Question
- **70 Kg otherwise healthy male – NPO**
- **Appropriate 24 hour fluid/electrolyte regimen**
 - D5W @ 125 ml/hr
 - NS @ 125 cc/hr
 - D5W + NS @ 150 ml/hr
 - D5W + ½ NS @ 125 ml/hr
 - LR @ 125 ml/hr

Sodium
- **Sensible losses**
 - urine – 1500 ml
 - ~150 mEq
 - fecal – 300 ml
 - ~30 mEq
- **Insensible loss – 1000 ml**
 - ~15-30 mEq
- **Formula**
 - 2-4 mEq/Kg

Fluid and Sodium
- **70Kg healthy male**
 - fluid volume ~3000 ml
 - sodium ~210 mEq
- **Fluid needed for normal requirements**
 - 210 mEq Na+/3L = ~70 mEq/L
- **Available fluid**
 - ½ NS 77 mEq/L
Question?

- 70 Kg otherwise healthy male – NPO
- Appropriate 24 hour fluid/electrolyte regimen
 - D5W @ 125ml/hr
 - NS @ 125cc/hr
 - D5W + NS @ 150ml/hr
 - D5W + ½ NS @ 125ml/hr √
 - LR @ 125ml/hr

Question?

- Why D5W?
 - provide caloric needs
 - something is better than nothing
 - required for body to use sodium
 - prevent catabolism √
 - why?
 - ‘Protein sparing effect’ of glucose

Question?

- 70 Kg otherwise healthy male – NPO
- Appropriate 24 hour fluid/electrolyte regimen
 - D5W @ 125ml/hr
 - NS @ 125cc/hr
 - D5W + NS @ 150ml/hr
 - D5W + ½ NS @ 125ml/hr √
 - LR @ 125ml/hr

Other ions

- Add to fluid as necessary
- Normal requirements

Pre-existing deficits/excesses

- Diagnosis
 - clinical
- Quantification
 - severity of clinical signs
- Treatment
 - deficit: repletion
 - excess: removal
- Ongoing monitoring

Ongoing losses/gains

- Losses
 - GI
 - urinary
 - post-operative (‘third spacing’)
 - increased insensible losses
- Gains
 - medications
 - catabolism
 - resorption of ‘third space’
Sodium

- Sodium concentration
 - determines body fluid osmolality
 - 'manages' water
- Hypo/hyper natremia
 - reflection of body water status
 - hyponatremia: water excess
 - hypernatremia: water deficit
 - rarely true sodium deficit/excess

Hypo/hyper natremia

<table>
<thead>
<tr>
<th></th>
<th>True</th>
<th>Spurious</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyponatremia</td>
<td>$\Delta [Na^+] \times \text{TBW}$ (5% NaCl)</td>
<td>Restrict water (3-5% NaCl)</td>
</tr>
<tr>
<td>Hypernatremia</td>
<td>D5W</td>
<td>D5W</td>
</tr>
</tbody>
</table>

Hypo/hyper natremia

- Initial partial rapid correction
 - alleviate symptoms
- Rapid total correction is extremely dangerous
 - rapid increase: central myelinolysis
 - rapid decrease: convulsions/coma
- Close monitoring

Potassium

- Roles
 - neuromuscular communication
 - cardiac function
 - gut motility
 - acid/base regulation
- Hypokalemia
 - post-operative renal failure
- Hyperkalemia
 - iatrogenic
 - excessive losses

Hyperkalemia

- Presentation
- Dangerous
- Immediate treatment
 - cardioprotection
 - calcium gluconate 1gm as 10% solution
 - encourage cellular uptake
 - dextrose and insulin
 - alkalization
- Removal of potassium
 - exchange resins
 - dialysis

Hypokalemia

- Presentation
- Treatment
 - prevention
 - repletion
 - <20 mEq/hr
Calcium

- Neuromuscular stability
- Hypo/hyper calcemia presentation
 - Hypocalcemia
 - Pancreatitis
 - massive infection
 - renal failure
 - pancreatic and GI fistula
 - hypoparathyroidism
 - Hypercalcemia
 - metastatic cancer
 - hyperparathyroidism

Hypo/hypercalcemia

- Hypocalcemia
 - acute
 - IV administration
 - long-term
 - PO calcium + vitamin D
- Hypercalcemia
 - vigorous diuresis
 - PO or IV phosphates
 - steroids and calcitonin
 - plicamycin

Magnesium

- Essential for most enzyme systems
- Hypo/hyper magnesemia presentation
 - Hypomagnesemia
 - starvation
 - malabsorption
 - iatrogenic
 - pancreatitis
 - DKA
 - alcoholism
 - aldostronism
 - Hypermagnesemia
 - renal insufficiency
 - iatrogenic
 - burns
 - massive trauma
 - dehydration
 - acidosis

Hypo/hyper magnesemia

- Hypomagnesemia
 - prevention
 - parenteral administration MgSO₄ or MgCl₂
- Hypermagnesemia
 - calcium gluconate: 5-10mEq
 - correct acidosis and dehydration
 - dialysis

Pre-operative management

- Correct volume and electrolyte abnormalities
 - external losses
 - internal redistribution
- Clinical diagnosis
 - separate entities
 - algebraic sum
- Intensive monitoring

Intra-operative management

- Blood
 - replace with blood for blood loss >500ml
- Fluid requirements (losses)
 - degree of dissection
 - duration of procedure
 - crude guide: 500-1000mL/hr
to max of 2-3L/4hours
- Intensive monitoring
Post-operative ‘third space’
- I phase of healing
 - inflammatory phase
 - capillary leak
- Quantification
 - degree of dissection
- Type of loss
 - extra-cellular fluid
- POD III onwards
 - resorption

Early post-operative period (POD I&II)
- Normal requirements
- Carryover from surgery
- Extra losses/gains
 - third space
 - GI
 - medications
 - catabolism

Late post-operative period (POD III onwards)
- Normal requirements
- Extra losses/gains
 - GI
 - medications
 - resorption of third space
- Other ion replacements

Summary
- Similar for volume and electrolytes
- Normal requirements
 - small amount of glucose
- Pre-existing deficits/excesses
- Ongoing losses/gains
- Evaluation – clinical and limited laboratory
- Signs and symptoms – algebraic sum
- Monitoring