Immune Mediated Neuropathies

Hernan Gatuslao, M.D.
Assistant Professor
Department of Neurology
Virginia Commonwealth University
School of Medicine

AIDP and CIDP

- Acute inflammatory demyelinating polyneuropathy (AIDP) or Guillain Barré Syndrome
- Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP)

Guillain-Barré Syndrome (GBS)

- Monophasic, acute inflammatory demyelinating polyneuropathy
- Variants include axonal or mixed axonal/demyelinating pathology
 - acute motor axonal neuropathy (AMAN)
 - acute motor sensory axonal neuropathy (AMSN)
 - acute autonomic neuropathy (AAN)
 - Miller-Fisher syndrome
 - ophthalmoplegia
 - ataxia
 - areflexia

GBS: Clinical Features

- AIDP and AMSN present in similar fashion
 - begins with rapidly progressive ascending paralysis
 - proximal muscles are often affected more than distal muscles
 - weakness progresses over 7 to 21 days
 - mean duration from onset to maximal weakness is 12 days

GBS: Clinical Features

- Annual incidence of 1-2/100,000
- Occurs at any age
- Onset
 - 70% of cases follows a respiratory or gastrointestinal infection (campylobacter jejuni) by 5 days to 3 weeks
 - other precipitating factors:
 - HIV
 - immunization
 - pregnancy
 - Hodgkin’s disease
 - surgery

- associated with cranial nerve and respiratory muscle weakness
 - intubation occurs in 20% of patients
 - loss of deep tendon reflexes
 - distal paresthesias and sensory loss
 - papilledema, autonomic disturbances and SIADH are seen in some patients
- AMAN
 - pronounced distal weakness with sparing of cranial nerves
Diagnosing GBS
- Quadriplegia without facial weakness is unusual with GBS
- A hanging jaw suggests a diagnosis of myasthenia gravis
- Weakness of muscle supplied by upper cervical roots and orofaryngeal dysfunction is highly associated with subsequent respiratory distress
- Early urinary retention occurs and can mimic spinal cord disease
- Presence of deep tendon reflexes throughout is not consistent with GBS

GBS: Diagnostic Workup
- Electrodiagnostic studies
 - nerve conduction studies show loss of “F” wave latency response and reduced conduction velocity (myelin damage)
 - reduced motor fiber amplitudes reflect secondary axonal damage and imply a worse prognosis for recovery

GBS: Diagnostic Workup
- LP
 - CSF reveals cytoalbuminologic dissociation
 - elevated protein with normal WBC count
 - elevated CSF protein may not be evident until 2 weeks into the disease process
 - mild lymphocytic or monocytic pleocytosis is sometimes seen and should raise suspicion for an infectious polyradiculopathy (HIV, CMV or Lyme disease) or polio
- Anti-GM1 and anti-GQ1b antibodies
- CMV titers

GBS: Treatment
- Patients with signs of respiratory muscle weakness should be admitted to an ICU for observation until it is clear that the illness has stabilized
- Respiratory parameters for elective intubation
 - VC <20 ml/kg
 - Plmax <30 cm H2O or PEmax <40 cm H2O
 - >30% reduction in VC from baseline

GBS: Treatment
- Plasmapheresis
 - if initiated within 10 days of the onset of symptoms, can speed the onset of recovery
 - a total of 5 treatments is performed every 1 to 2 days with a total of 2 to 4L of plasma exchanged for 5% albumin during each treatment

GBS: Treatment
- Intravenous immune globulin (IVIG)
 - 0.4 gm/kg/day for 5 consecutive days
 - rebound deterioration after completing a course of IVIG can sometimes occur
 - there is no proven benefit of combining IVIG and plasmapheresis treatments
GBS: Treatment

- **Pain management**
 - pain can be severe and may result from meningeal inflammation or neuropathic mechanism
- **Dysautonomia**
 - most frequent cardiovascular manifestation is sustained hypertension and tachycardia
 - beta-blockers
 - propranolol or labetolol
- **Rehabilitation**

GBS: Poor Prognosis

- **Advance age**
- **Very low distal motor amplitudes**
- **Rapidly progressive weakness occurring over the first week**
- **Respiratory failure requiring intubation**

Chronic Acquired Demyelinating Polyneuropathy (CADP)

- Autoimmune disease that targets the myelin sheaths of peripheral nerves
- **Diagnosis difficult:**
 - clinical heterogeneity of the disease
 - multifocality
 - predilection for proximal nerve segments

CADP

- 54% of patients have features that do not conform to the typical presentation:
 - predominantly distal features
 - pure sensory neuropathy
 - marked asymmetries
 - associated CNS demyelinating disease
 - predominant cranial nerve involvement

CADP: Phenotypic Pattern

Distinguish demyelinating polyneuropathies by the phenotypic pattern: that is, what are the examination features?

Chronic Inflammatory Demyelinating Polyradiculoneuropathy (CIDP)

- Separate from GBS or AIDP on basis of chronic relapsing course, enlargement of nerves and responsiveness to steroids
CIDP: Prevalence
- Underestimated due to underreporting, differences in diagnostic criteria and the uncertainty in making the diagnosis
- 1 to 7.7 per 100,000
- 2,000 to 15,000 cases in the US
- 5% of all neuropathies, 10 million cases of neuropathy in US then approximately 500,000
- 40% achieve lasting remission
- 60% could have active disease at any given time

CIDP: Clinical Manifestation
- Insidious onset and evolves slowly
- Clinical course (at least 2 months)
 - steadily progressive
 - stepwise progressive
 - chronic monophasic
 - recurrent

CIDP: Clinical Manifestation
- Motor and sensory (numbness, paresthesias and dysesthesias of the hands and feet) involvement
- Hyporeflexia or areflexia
- Polyradicular
- Symmetric
- Proximal and distal muscles
- Cranial and respiratory muscles were sometimes also involved

CIDP: Pathology
- Segmental demyelination and remyelination
- Thinned myelin sheaths in proportion to axon caliber
- Onion bulb formation
- Sural nerve may be unaffected in polyradicular and preferential involvement of motor fibers

CIDP: Pathology
- Mononuclear cell infiltrates may also be seen in the endoneurium
 - more prominent in the proximal nerve trunks or spinal roots
 - typically spars or absent in sural nerve biopsies.
- Require electron microscopy and teased fiber analysis
 - not available to most practicing neurologists

CIDP: Diagnostic Workup
- Electrodiagnostic study
 - multifocal conduction block
 - prolonged distal latencies
 - nerve conduction velocity slowing to less than 80% of normal
 - loss of late responses
 - abnormal temporal dispersion of the compound muscle action potential
- LP
 - CSF reveals cytoalbuminologic dissociation
- Biopsy
Diagnostic Criteria for CIDP

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Pathology of axonal involvement</th>
<th>Motor sensory dysfunction involving more than six limbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least 3 weeks of axonal involvement</td>
<td>Referral to neurologist</td>
<td>At least 1 week</td>
</tr>
<tr>
<td>Partial or complete axonal loss in peripheral nerves</td>
<td>Disturbance in deep tendon reflexes</td>
<td>Disturbance in deep tendon reflexes</td>
</tr>
<tr>
<td>Elbow, knee, ankle</td>
<td>EMG shows axonal loss</td>
<td>EMG shows axonal loss</td>
</tr>
</tbody>
</table>

CIDP: Treatment

- **Corticosteroids**
 - Oral
 - 1 mg/kg daily of prednisone
 - titrate dose according to clinical response
 - IV methylprednisolone
 - 1 gm IV q day times 3-5 days

- **Antimetabolites**
 - Azathioprine
 - 1.5-3 mg/kg/day
 - Mycophenolate mofetil
 - 1-1.5 gm PO BID

- **Alkylating agents**
 - Cyclophosphamide

- **Immunophilins**
 - Cyclosporin
 - 2.5-5.0 mg/kg/day divided into 2 doses PO

- **Intravenous immune globulin**
- **Plasmapheresis**

CIDP: Prognosis

- Patients with discrete relapses have a better prognosis than those with a progressive course
- In one study, 73% were said to have made a good recovery but the long term outcome in this disease has been generally poor with decades of disability and treatment dependence
- 10% of cases, the disease burns out after many years and treatment can be withdrawn

Neuropathy Comparison
Variants of CADP

- **Temporal variants**
 - SjDP

- **Distribution variants**
 - MMN
 - MADSAM neuropathy
 - DADS neuropathy

- **Concurrent illness variants**
 - MGUS
 - diabetes mellitus
 - HIV infection
 - lymphoma
 - osteosclerotic Myeloma
 - POEMS syndrome
 - Crow-Fukase syndrome
 - Castleman’s disease

- **Possible variants**
 - chronic active hepatitis
 - inflammatory bowel disease
 - connective tissue disease
 - bone marrow and organ transplants
 - central nervous system demyelination
 - nephrotic syndrome
 - hereditary neuropathy
 - thyrotoxicosis
 - axonal
 - pure sensory