Stroke III: Cerebral Hemorrhage

Warren L. Felton III, MD
Professor and Associate Chair of Clinical Activities, Department of Neurology
Associate Professor of Ophthalmology
Chair, Division of Neuro-Ophthalmology
Virginia Commonwealth University
School of Medicine

Background

- Intracranial hemorrhage or hemorrhagic stroke:
 - 15-20% of stroke
- 4 subtypes

4 Subtypes

- Intracerebral hemorrhage (ICH) or intraparenchymal cerebral hemorrhage: primary hemorrhage into the brain parenchyma
 - 10-15% of stroke is primary ICH
 - 30% in blacks and Asians
 - Eclampsia causes 40% of ICH in pregnancy
 - Note: Ischemic stroke may undergo hemorrhagic transformation

- Subarachnoid hemorrhage (SAH): hemorrhage into the subarachnoid space
 - 5% of stroke

- Subdural hemotoma (SDH): hemorrhage into the subdural space

- Epidural hemotoma (EDH): hemorrhage into the epidural space

Causes of Cerebral Hemorrhage

- Hypertension
- Intracranial aneurysm
- Arteriovenous malformation (AVM)
- Trauma
- Bleeding diathesis
- Complication of anticoagulant therapy
- Illicit drug use
- Mycotic aneurysm

Causes of Cerebral Hemorrhage

- Hemorrhage into a primary or metastatic brain tumor
- Hemorrhage into a brain abscess
- Arteritis (primary, connective tissue disorder, syphilitic, etc.)
- Amyloid angiopathy
- Hemorrhagic leukoencephalopathy
- Idiopathic, possibly cryptic arteriovenous malformation
ICH: Hypertension
- The most common risk factor for spontaneous ICH
- 4 common locations of ICH
 - 50% basal ganglia (especially putamen 40%, caudate 7%), plus thalamus 10% = 60%
 - 20% lobar
 - 10% pons
 - 10% cerebellum
- Pathogenesis; HTN causes:
 - fibrinoid neurosis of penetrating and subcortical arteries
 - formation of Charcot-Bouchard microaneurysms
 - predisposing to hemorrhage

ICH: Amyloid Angiopathy
- Patients typically 60 years and older
- Involved blood vessels friable
- Surgical evacuation should be avoided

ICH: Bleeding Diathesis
- Thrombocytopenia, platelets < 30,000/uL
- Factor VIII and Factor IX deficiencies, genetic
- Hypofibrinogenemia
- Disseminated intravascular coagulation (DIC)

ICH: Drugs
- Drugs of abuse: cocaine, amphetamines
 - sympathomimetic effect may cause acute rise in BP
 - promote vasculitis
- Anticoagulants
 - Warfarin
 - Heparin
 - Enoxaparin

ICH: Other
- Hemorrhage into CNS neoplasm
 - primary neoplasm
 - metastasis: lung, breast, melanoma, thyroid, renal
- Embolism
 - septic embolism in bacterial endocarditis
 - non-septic embolism in marantic endocarditis
- Hemorrhage into brain abscess
ICH: Clinical Presentation

- Acute severe HA
- Obundation or coma
- Markedly elevated BP
- Neurologic deficit maximal at onset

ICH: Clinical Presentation

- Neuroanatomic localization
 - putamen: contralateral hemiparesis and hemisensory loss, aphasia (left cerebral), hemineglect (right cerebral)
 - thalamus; contralateral hemisensory loss
 - cerebellar: ipsilateral dystmetria, gait ataxia
 - pons; paraparesis or quadriparesis, horizontal gaze palsy

ICH: Evaluation

- Neuroimaging
 - Head CT, CT Angiography
 - Brain MRI, Head MRA
 - Cerebral angiography
- Risk factor assessment, including blood pressure

ICH: Evaluation

- Laboratory
 - CBC, diff, plt
 - PT, PTT, INR
 - Fibrinogen
 - Drug screen
 - Syphilis reagin
 - Westergren ESR, ANA
 - ABG
 - Factor VIII and IX in selected patients

Head CT

Left Basal Ganglia Hemorrhage

ICH: Treatment

- Airway and respiratory support
- Blood pressure control: labetalol, sodium nitroprusside
- Surgical evacuation for lobar hemorrhage, cerebellar hemorrhage
- Heparin induced: protamine sulfate
- Warfarin induced: fresh frozen plasma
 - note that vitamin K may take 8 to 24 hours for full effect
- Acute obstructive hydroencephalus from intraventricular hemorrhagic extension: ventricular shunt

SAH: Intracranial Aneurysm Epidemiology

- Aneurysmal SAH annual US incidence is 1 in 10,000
 - 0.5-1.0% of adults have cerebral aneurysm
 - Multiple aneurysms common, approximately 25%
- Risk factors
 - Female, sex, age, cigarette smoking, HTN, heavy ETOH, sympathomimetic agents
 - Genetic Marfan’s syndrome, Ehlers-Danlos syndrome IV, NF 1, AD polycystic kidney disease
SAH: Intracranial Aneurysm

Epidemiology
- 40% mortality rate from aneurysmal SAH
- Neuroanatomic localization
 - 85% aneurysms in anterior circulation
 - Junction of ICA + PCoA
 - ACoA
 - MCA trifurcation
 - 15% aneurysms in posterior circulation
 - Basilar tip
 - Junction of vertebral artery and PICA

Aneurysmal SAH: Clinical Presentation
- Severe HA, worst in life
- "Warning leak" in 25% of patients
- Meningeal irritation
- Syncope
- Retinal subhyloid hemorrhage
- Focal signs
 - PCoA: 3rd CN palsy with pupillary dilatation
 - MCA: contralateral paresis
 - ACoA: bilateral LE paresis
 - Basilar: coma, vertical gaze paresis

Aneurysmal SAH: Evaluation
- Head CT: 90-95% sensitive in 1st 24 hours
- Lumbar puncture nearly 100% sensitive
- CTA, MRA
- Cerebral angiography

Head CT
- Subarachnoid Hemorrhage
- Intraventricular Hemorrhage

Aneurysmal SAH: Treatment
- Blood pressure control
- Early surgical clipping
 - 10-20% rebleeding rate in 1st 24-72 hours if early surgery cannot be performed
- Endovascular occlusion: coil and other developing techniques
Aneurysmal SAH: Complications
- 50% develop cerebral vasospasm in the 1st 3-15 days
 - may cause ischemic infarct
 - nimodipine, a calcium channel blocker, used to reduce incidence
- 20% have acute obstructive hydrocephalus
 - ventriculostomy
- 10-30% develop hyponatremia
- 25% have seizures

Aneurysmal SAH: Prognosis
- 40% mortality
- 3-4% rebleeding risk in 1st 24 hours
- 1-2% per day rebleeding risk in 1st month
- 3% rebleeding risk per year after 1st 3 months

Anteriorvenous Malformation (AVM): Epidemiology
- Embryonal anomaly—conglomeration of arteries and veins without intervening capillaries
- Clinically evident most often ages 10-40 years
- 0.15% prevalence; most remain asymptomatic
- Men affected 2x rate of women
- 4.6% hemorrhagic mortality rate

AVM: Clinical Presentation
- 50% present with SAH or ICH
 - AVM the 2nd most common cause of spontaneous SAH
- 30% present with seizures
 - 1% of such patients hemorrhage in 1st year
- 20% present with HA, focal neurologic deficits, or cognitive impairment
- Evaluation is similar to that for cerebral aneurysm

Arteriovenous Malformation

CT, Cerebreal Angiography, MRI

AVM: Treatment
- Surgical excision
- Endovascular occlusion: balloon, coil, glue, sclerosing drugs
- Radiotherapy to promote occlusive vascular injury and thrombosis
Subdural Hematoma

- **Pathogenesis:** shearing of bridging veins between the brain surface and adjacent dural venous sinuses causes bleeding in the subdural space
 - SDH may absorb spontaneously or become encapsulated
- **Acute SDH carries 50% mortality due to trauma**
- **Chronic SDH develops more slowly**
 - risk factors: minor trauma
- SDH, SAH and ICH often co-exist

SDH: Clinical Features

- 3 features most common
 - HA
 - decreased alertness
 - cortical abnormalities
- Seizures may occur

SDH

- **Diagnosis, neuroimaging**
 - crescent-shaped density over brain outer surface against dura and inner skull surface
 - Appearance changes over time
 - acute SDH: hyperdense on CT
 - subacute SDH: isodense on CT, hyperdense on T1 MRI
 - chronic SDH: hypodense on CT
- **Management**
 - surgical excision
 - observation

EDH: Clinical Features

- **Head trauma**
 - loss of consciousness
 - lucid interval
 - progressive decreased alertness
- **Headache**
- **Cortical abnormalities

Epidural Hematoma

- **Pathogenesis:** tear of middle meningeal artery causes blood collection between skull and dura mater
 - most common location is along lateral wall of middle cranial fossa
- Rare compared to SDH, usually due to severe head trauma
EDH

- **Diagnosis, neuroimaging**
 - Biconvex hyperdensity on CT
- **Management**
 - Surgical evacuation

Head CT

Right Epidural Hematoma

Intracranial Hemorrhage: Summary

- 4 types: ICH, SAH, SDH, EDH
- Spontaneous or traumatic
- Risk factors: HTN, aneurysm, AVM, anticoagulants, trauma
- Mortality and morbidity are high
- Management: risk factors, surgery, endovascular