Acute Renal Failure

George Feldman, MD
Todd W.B. Gehr, MD

Acute Renal Failure

• Rapid decline in renal function
 – Rise in blood urea nitrogen (BUN)
 – Rise in serum creatinine (Cr)
 • Dependent on Baseline Cr
 • If < 3 mg/dl, Cr rise > 0.5 mg/dl
 • If > 3 mg/dl, Cr rise > 1.0 mg/dl

Acute Renal Failure

• Urine flow can vary
 – Decreased – oliguric or anuric
 – Normal – nonoliguric
 – Increased – polyuric

Acute Renal Failure

• Consequences
 – Fluid retention – volume overload

Acute Renal Failure

• Consequences
 – Electrolyte / acid-base abnormalities
 – Build up of toxins - uremia

Clinical Significance of ARF

• Hospitalized patients
• 4% of patients in medical / surgical units
• Higher incidence in certain situations
 – severe trauma, abdominal aortic aneurysm resection, cardiac surgery
 – sepsis, shock, heart failure, multi-organ failure
Clinical Significance of ARF

- Reversible – time course varies
- Treatment – renal replacement therapy (RRT)
- Mortality – high
 - Levy et al: JAMA 1996; 275, 1489

Acute Renal Failure - Causes

- Pre-renal
- Renal
Acute Renal Failure

• Post-renal (obstruction)

Diagnostic Approach

• Establish time of onset
• Review history
• Review medications
• Physical exam
 – assess volume status
 – cardiac function

Diagnostic Approach

• Examine the urine (urinalysis)
• Exclude urinary tract obstruction
• Distinguish between
 – Pre-renal disease
 – Renal disease
 • acute tubular necrosis (ATN)

Urinary Tract Obstruction (Post)

• Bilateral
 – Unless single kidney
• Urethral
• Bladder neck
 – prostate or bladder infection or cancer
 – functional: neuropathy
• Ureteral
 – Intra: crystals (sulfonamide, uric), clots, pyogenic debris, stones, edema, necrotizing papillitis
 – Extra: tumor (cervix, prostate) endometriosis, fibrosis, ligation

Urinary Tract Obstruction (Post)

• Urine flow
 – complete obstruction → anuria
 – incomplete obstruction
 • oliguria, nonoliguria or polyuria
 • alternating anuria/oliguria with polyuria
• Symptoms
 – suprapubic pain
 – urge to void
 – pain ± hematuria with ureteral stones
 – none

Urinary Tract Obstruction (Post)

• Diagnosis
 – bladder catheter
 – renal ultrasound
 – other visualizing procedure (MRI, CT)
• Treatment
 – remove obstruction
 – reversible
 – renal damage
 • ischemia
 • damage to Na conservation & concentrating mechanism
 • post-obstructive diuresis
Pre-renal ARF

• Most common cause
• Inadequate renal perfusion
 – Hypovolemia
 • extrarenal loss: GI, skin, burns
 • obligatory diuresis: excess diuretics, osmotic diuretics, post-obstructive diuresis, lithium
 • inadequate or No fluid intake
 – Impaired cardiac function
 • CHF, MI, pericardial tamponade
 – Vascular disease
 • renal artery stenosis (bilateral, ACE inhibitor)
 – Peripheral vasodilation: bacteremia/sepsis

Pre-renal ARF

• ↑ renal vascular resistance / renal ischemia
 – hepatorenal syndrome
 – NSAIDs

Pre-renal ARF

• If perfusion defect is corrected, renal function recovers. (Treatment)
 – ATN can occur, if perfusion not corrected
• Renin, aldosterone, ADH elevated
 – low urine volume
• Urinalysis: benign sediment, no protein
 – except CHF, high fever
• Clinical manifestations
 – 10% weight loss (if no edema) - excellent
 – orthostatic hypotension - good
 – dry skin & buccal mucosa - unreliable
• Treatment

Hepatorenal Syndrome

• In patients with severe liver disease
• Features of pre-renal ARF except
 – inadequate response to volume expansion
 – inadequate response ↑ blood pressure
• Mechanism unknown
 – renal vasoconstriction
• Reversible if
 – hepatic function improves
 – liver transplantation

Hepatorenal Syndrome

• Diagnosis
 – Clinically, appears volume depleted
 • urinary indices consistent with pre-renal ARF
 • Edematous: ascites, anasarca
 • if not edematous, fluid challenge may be indicated
• Treatment
 – Dialysis indicated if
 • hepatic transplant possible
 • hepatic function likely to recover

Nonsteroidal Anti-inflammatory Drugs (NSAIDs)

• Main effect - blockade of prostaglandin production
 – regulate renal blood flow – vasodilate
 – important when renal blood flow is limited
 • volume depletion, CHF, hepatic cirrhosis
• NSAIDs
 – ↓ blood flow, ↑ Na retention, ↓ K excretion, ↓ water excretion
 – hypertension, edema
 – ARF
• Idiosyncratic effect
 – Interstitial nephritis with nephrotic syndrome
Renal Artery Stenosis & Angiotensin
- Bilateral renal artery stenosis
 - limits blood flow to kidneys
 - stimulates renin-angiotensin-aldosterone axis
- Angiotensin II
 - vasoconstrictor
 - post-glomerular efferent arteriole
 - ang II maintains GFR when flow is limited
- ACEI/ARB
 - ACEI blocks generation of angiotensin II
 - ARB block angiotensin receptors
- ACEI/ARB induced ARF is reversible

Renal Causes of ARF
- Glomerular diseases: GN, lupus, Goodpasture’s syn., HS purpura, eclampsia, SBE
- Vascular diseases: vasculitis, scleroderma, malignant HTN, HUS, atheroemboli
- Intrarenal deposition: acute uric acid nephropathy
- Acute Tubular Necrosis (ATN)
 - hemodynamic
 - nephrotoxins
- Acute Interstitial Nephritis (AIN)

Acute Tubular Necrosis (ATN)
- Induced by ischemia or toxin
- Cellular debris obstructs tubules
- Tubules leak the contents
- Medulla at jeopardy (PO2 is 10 to 20 mm Hg)
- Typically GFR < 5 ml/min and oliguria (<400 ml/day)
 - Sometimes nonoliguric
- Light microscopy reveals little damage

Urine Chemistries in ATN
- Na 30 to 90 mEq/L
- Fractional Excretion of Na or FE_Na > 1%
- U_Cr/P_Cr < 15
- Loss of concentrating ability
 \(P_{\text{osm}} \approx U_{\text{osm}} \)

Urine in Oliguric Conditions

<table>
<thead>
<tr>
<th>Pre-Renal</th>
<th>Renal</th>
</tr>
</thead>
<tbody>
<tr>
<td>UA</td>
<td>hyaline casts</td>
</tr>
<tr>
<td>Sp. Gravity</td>
<td>>1.020</td>
</tr>
<tr>
<td>Osmolality</td>
<td>>500</td>
</tr>
<tr>
<td>Na</td>
<td><20</td>
</tr>
<tr>
<td>U_Cr/P_Cr</td>
<td>>20</td>
</tr>
<tr>
<td>FE_Na</td>
<td><1%</td>
</tr>
</tbody>
</table>
Acute Tubular Necrosis (ATN)
• After onset, urine volume & indices change little
 – Until recovery begins
• Serum Cr rises approximately 1 mg/dl/day

Nephrotoxicity
• Kidneys susceptible
 – drugs concentrated
 – transport systems
 – renal blood flow
 – metabolism
• Mechanisms
 – vasoconstriction
 • cyclosporine, tacrolimus, amphotericin B, radiocontrast agents
 – intratubular precipitation
 • acyclovir, sulfathiazole
 – acute tubular necrosis
 • aminoglycosides, heavy metals

Aminoglycoside Toxicity
• Mechanism:
 – freely filtered, then absorbed by proximal tubular cells
 – neomycin > gentamicin = tobramycin > streptomycin
• Occurs in 10 to 20% patients
• Toxicity dependent on dose and duration
• Starts 7 or more days after initiation of tx
• Improvement begins 3 to 21 days after stopping
• Prevention
 – Avoid drug if possible
 – Adjust dose for renal function
 – Monitor blood levels

Acute Tubular Necrosis (ATN)
• Recovery
 – 1st urine output increases
 – then Cr begins to decrease
• Mortality is high
• Prevention is best
 – avoid hemodynamic instability / toxin.
• Treatment
 – control volume
 – avoid electrolyte disturbances
 – dialysis

Nephrotoxicity
• Specific tubular disorders
 – distal RTA – amphotericin B
 – proximal tubule dysfunction - streptozotocin
 – magnesium wasting - cisplatin
 – chronic interstial nephritis / papillary necrosis - phenacetin
 – acute allergic interstitial nephritis
 • penicillins, β-lactams
 • sulfonamides
 • NSAIDs

Radiocontrast Nephropathy
• Mechanism
 – vasoconstriction
 – direct toxic effect
 – mild ↑ Cr in almost all
 – MRI agents safe
• Risk
 – Underlying renal disease (4 to 11%)
 – Diabetic nephropathy (10 to 35%)
 – CHF / decreased renal perfusion
Radiocontrast Nephropathy

- Clinical course
 - Starts immediately after administration
 - Usually self-limited
 - Mortality significantly greater
- Prevention
 - Avoid if possible
 - Avoid dehydration & NSAIDs
 - Hydrate before exposure
 - NaHCO₃ reduces risk
 - Acetylcysteine reduces risk

Acute Interstitial Nephritis (AIN)

- Hypersensitivity to drugs: penicillins, cephalosporins, NSAIDs.
- Patchy infiltration with lymphocytes & mononuclear cells, ± eosinophils / plasma cells
- Abrupt onset & nonoliguria
- Sometimes: “drug” rash, fever, eosinophilia, hematuria, flank pain
 - Eosinohilia occurs with atheroemboli, polyarteritis, vasculitis

Acute Interstitial Nephritis (AIN)

- Urine: WBC, WBC casts, eosinophils, protein
 - NSAIDs induce nephrotic syndrome
 - Urine indices look like ATN
- 48 h gallium scan
- Renal biopsy
- Tx: stop drug
 - Recovery usually occurs
 - Some feel steroids help

ARF

- Always think about obstruction
- Always assess the volume and cardiac status
- Always look at the urine
- Always link the diagnostic possibilities to the clinical presentation
- Prevention is the key
- Avoid complications such as hyperkalemia, GI bleeding, volume overload, pericarditis, acidosis