Acute Renal Failure

George Feldman, MD
Todd W.B. Gehr, MD

• Rapid decline in renal function
 – Rise in blood urea nitrogen (BUN)
 – Rise in serum creatinine (Cr)
 • Dependent on Baseline Cr
 • If < 3 mg/dl, Cr rise > 0.5 mg/dl
 • If > 3 mg/dl, Cr rise > 1.0 mg/dl

• Urine flow can vary
 – Decreased – oliguric or anuric
 – Normal – nonoliguric
 – Increased – polyuric

• Consequences
 – Fluid retention – volume overload
 – Electrolyte / acid-base abnormalities
 – Build up of toxins - uremia

Clinical Significance of ARF

• Hospitalized patients
• 4% of patients in medical / surgical units
• Higher incidence in certain situations
 – severe trauma, abdominal aortic aneurysm resection, cardiac surgery
 – sepsis, shock, heart failure, multi-organ failure
Clinical Significance of ARF

- Reversible – time course varies
- Treatment – renal replacement therapy (RRT)
- Mortality – high
 – Levy et al: JAMA 1996; 275, 1489

Acute Renal Failure - Causes

- Pre-renal
- Renal
Acute Renal Failure

- Post-renal (obstruction)

Diagnostic Approach

- Establish time of onset
- Review history
- Review medications
- Physical exam
 - assess volume status
 - cardiac function

Diagnostic Approach

- Examine the urine (urinalysis)
- Exclude urinary tract obstruction
- Distinguish between
 - Pre-renal disease
 - Renal disease
 • acute tubular necrosis (ATN)

Urinary Tract Obstruction (Post)

- Bilateral
 - Unless single kidney
- Urethral
- Bladder neck
 - prostate or bladder infection or cancer
 - functional: neuropathy
- Ureteral
 - Intra: crystals (sulfonamide, uric), clots, pyogenic debris, stones, edema, necrotizing papillitis
 - Extra: tumor (cervix, prostate) endometriosis, fibrosis, ligation

Urinary Tract Obstruction (Post)

- Urine flow
 - complete obstruction → anuria
 - incomplete obstruction
 • oliguria, nonoliguria or polyuria
 • alternating anuria/oliguria with polyuria
- Symptoms
 - suprapubic pain
 - urge to void
 - pain ± hematuria with ureteral stones
 - none

Urinary Tract Obstruction (Post)

- Diagnosis
 - bladder catheter
 - renal ultrasound
 - other visualizing procedure (MRI, CT)
- Treatment
 - remove obstruction
 - reversible
 - renal damage
 • ischemia
 • damage to Na conservation & concentrating mechanism
 • post-obstructive diuresis
Pre-renal ARF

- Most common cause
- Inadequate renal perfusion
 - Hypovolemia
 - extrarenal loss: GI, skin, burns
 - obligatory diuresis: excess diuretics, osmotic diuretics, post-obstructive diuresis, lithium
 - inadequate or No fluid intake
 - Impaired cardiac function
 - CHF, MI, pericardial tamponade
 - Vascular disease
 - renal artery stenosis (bilateral, ACE inhibitor)
 - Peripheral vasodilation: bacteremia/sepsis

- If perfusion defect is corrected, renal function recovers. (Treatment)
 - ATN can occur, if perfusion not corrected
- Renin, aldosterone, ADH elevated
 - low urine volume
- Urinalysis: benign sediment, no protein
 - except CHF, high fever
- Clinical manifestations
 - 10% weight loss (if no edema) - excellent
 - orthostatic hypotension - good
 - dry skin & buccal mucosa - unreliable
- Treatment

Hepatorenal Syndrome

- In patients with severe liver disease
- Features of pre-renal ARF except
 - inadequate response to volume expansion
 - inadequate response ↑ blood pressure
- Mechanism unknown
 - renal vasoconstriction
- Reversible if
 - hepatic function improves
 - liver transplantation

Nonsteroidal Anti-inflammatory Drugs (NSAIDs)

- Main effect - blockade of prostaglandin production
 - regulate renal blood flow – vasodilate
 - important when renal blood flow is limited
 - volume depletion, CHF, hepatic cirrhosis
- NSAIDs
 - ↓ blood flow, ↑ Na retention, ↓ K excretion, ↓ water excretion
 - hypertension, edema
 - ARF
- Idiosyncratic effect
 - Interstitial nephritis with nephrotic syndrome
Renal Artery Stenosis & Angiotensin

- Bilateral renal artery stenosis
 - limits blood flow to kidneys
 - stimulates renin-angiotensin-aldosterone axis
- Angiotensin II
 - vasoconstrictor
 - post-glomerular efferent arteriole
 - ang II maintains GFR when flow is limited
- ACEI/ARB
 - ACEI blocks generation of angiotensin II
 - ARB block angiotensin receptors
- ACEI/ARB induced ARF is reversible

Renal Causes of ARF

- Glomerular diseases: GN, lupus, Goodpasture’s syn., HS purpura, eclampsia, SBE
- Vascular diseases: vasculitis, scleroderma, malignant HTN, HUS, atheroemboli
- Intrarenal deposition: acute uric acid nephropathy
- Acute Tubular Necrosis (ATN)
 - hemodynamic
 - nephrotoxins
- Acute Interstitial Nephritis (AIN)

Acute Tubular Necrosis (ATN)

- Induced by ischemia or toxin
- Cellular debris obstructs tubules
- Tubules leak the contents
- Medulla at jeopardy (PO₂ is 10 to 20 mm Hg)
- Typically GFR < 5 ml/min and oliguria (<400 ml/day)
 - Sometimes nonoliguric
- Light microscopy reveals little damage

Urine Chemistries in ATN

- Na 30 to 90 mEq/L
- Fractional Excretion of Na or FE₅₉ > 1%
 \[FE₅₉ = \left(\frac{U_{\text{Na}}}{P_{\text{Na}}} \right) \times \frac{\text{Cr}}{\text{U}_{\text{Cr}}} \times 100 \]
- \(U_{\text{Cr}}/P_{\text{Cr}} < 15 \)
- Loss of concentrating ability
 \(P_{\text{osm}} \approx U_{\text{osm}} \)

Acute Tubular Necrosis (ATN)

- Typically, a cause can be identified
- Urinalysis: mild proteinuria, coarse granular casts & renal tubular epithelial cells/casts

Urine in Oliguric Conditions

<table>
<thead>
<tr>
<th></th>
<th>Pre-Renal</th>
<th>Renal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sp. Gravity</td>
<td>>1.020</td>
<td>1.010</td>
</tr>
<tr>
<td>Osmolality</td>
<td>>500</td>
<td><500</td>
</tr>
<tr>
<td>Na</td>
<td><20</td>
<td>>30</td>
</tr>
<tr>
<td>(U_{\text{Cr}}/P_{\text{Cr}})</td>
<td>>20</td>
<td><15</td>
</tr>
<tr>
<td>FE₅₉</td>
<td><1%</td>
<td>>2%</td>
</tr>
</tbody>
</table>
Acute Tubular Necrosis (ATN)

- After onset, urine volume & indices change little
 - Until recovery begins
- Serum Cr rises approximately 1 mg/dl/day

Nephrotoxicity

- Kidneys susceptible
 - drugs concentrated
 - transport systems
 - renal blood flow
 - metabolism
- Mechanisms
 - vasoconstriction
 - cyclosporine, tacrolimus, amphotericin B, radiocontrast agents
 - intratubular precipitation
 - acyclovir, sulfadiazole
 - acute tubular necrosis
 - aminoglycosides, heavy metals

Aminoglycoside Toxicity

- Mechanism:
 - freely filtered, then absorbed by proximal tubular cells
 - neomycin > gentamicin > tobramycin > streptomycin
- Occurs in 10 to 20% patients
- Toxicity dependent on dose and duration
- Starts 7 or more days after initiation of tx
- Improvement begins 3 to 21 days after stopping
- Prevention
 - Avoid drug if possible
 - Adjust dose for renal function
 - Monitor blood levels

Acute Tubular Necrosis (ATN)

- Recovery
 - 1st urine output increases
 - then Cr begins to decrease
- Mortality is high
- Prevention is best
 - avoid hemodynamic instability / toxin.
- Treatment
 - control volume
 - avoid electrolyte disturbances
 - dialysis

Nephrotoxicity

- Specific tubular disorders
 - distal RTA – amphotericin B
 - proximal tubule dysfunction - streptozotocin
 - magnesium wasting - cisplatin
 - chronic interstitial nephritis / papillary necrosis - phenacetin
 - acute allergic interstitial nephritis
 - penicillins, β-lactams
 - sulfonamides
 - NSAIDs

Radiocontrast Nephropathy

- Mechanism
 - vasoconstriction
 - direct toxic effect
 - mild ↑ Cr in almost all
 - MRI agents safe
- Risk
 - Underlying renal disease (4 to 11%)
 - Diabetic nephropathy (10 to 35%)
 - CHF / decreased renal perfusion
Radiocontrast Nephropathy

- Clinical course
 - Starts immediately after administration
 - Usually self-limited
 - Mortality significantly greater
- Prevention
 - Avoid if possible
 - Avoid dehydration & NSAIDs
 - Hydrate before exposure
 - NaHCO₃ reduces risk
 - Acetylcysteine reduces risk

Acute Interstitial Nephritis (AIN)

- Hypersensitivity to drugs: penicillins, cephalosporins, NSAIDs.
- Patchy infiltration with lymphocytes & mononuclear cells, ± eosinophils / plasma cells
- Abrupt onset & nonoliguria
- Sometimes: “drug” rash, fever, eosinophilia, hematuria, flank pain
 - Eosinophilia occurs with atheroemboli, polyarteritis, vasculitis

Acute Interstitial Nephritis (AIN)

- Urine: WBC, WBC casts, eosinophils, protein
 - NSAIDs induce nephrotic syndrome
 - Urine indices look like ATN
- 48 h gallium scan
- Renal biopsy
- Tx: stop drug
 - Recovery usually occurs
 - Some feel steroids help

ARF

- Always think about obstruction
- Always assess the volume and cardiac status
- Always look at the urine
- Always link the diagnostic possibilities to the clinical presentation
- Prevention is the key
- Avoid complications such as hyperkalemia, GI bleeding, volume overload, pericarditis, acidosis